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ON STOCHASTIC PROGRAMMED DESIGN OF STRATEGIES
IN A DIFFERENTIAL GAME

N.N. KRASOVSKII

A differential game /1—17/ is analyzed, in which the strategies form controls on
the basis of information on the motion's history. The computation of this game's
value is discussed, as also is the construction of optimal strategies on the basis
of auxiliary programmed constructions which contain an artificially introduced ran-
dom element. Thus, a method of stochastic programmed design, proposed in /18,19/
for differential games, is examined here from a certain general viewpoint.

1. cConsider the system described by the equation
Ze=f, e uvueERve( it {(1.1)

where t is time, 2z is the »n~dimensional phase vector of the object, w is the r-dimensional
control vector, v is the s-dimensional noise vector; the function f is continuous in all
arguments and satisfies in x the Lipschitz condition

P(E a®, u, 0) — F (6 a®, u, 0) [ <R [ 20— 2 |
R and @ are compacta; the symbol | r]denotes the Fuclidean norm of 2 . Let the functional
y=v{{l-18) {1.2)
be specified, defined on the continucus functions z {f{-18) = {x ], 1, < ¢t £ ¥ and continuous in
the metric ot 190 = max, |z 1]}

The sense of the problem lies in the construction of a control law U/ which forms a control
u by the feedback principle and guarantees the least possible value of 9. As the informa-
tion element for the current instant € [2, 9] we take the motion history z (f[-]11), realized
up to this instant. Then the problem can be stated as follows. BEvery function u(z (5, [-117), &)
defined for all possible histories z {f,{-]11), T =[f, 0] , and for sufficiently small values of
the precision parameter g > 0 and satisfying the condition u (x {(§[- tl,e}e= B is called a
strategy. Suppose that some strategy u{r(f1-17), € has been chosen, a history & {(%l-]12)
realized, a value £ >0 and a partitioning A{t;},i=0,...,m , for an interval f.<{ I &
of future time have been chosen, and let Tp=fg ..., Tp =¥, Then the motion z {5, [-18) con-
tinuously extending the given history z {f, [.14,) is determined for f, << ¥ as the solution
of the stepwise differential equation

il =F¢, zltl, uz @ 1v), 8 vi]), <<t § =0,..., m—1

where the realization of the noise v {§, [-18) = p{eQ, &, € t <<®#} can be any Borel-measur-
able function, not dependent on our choise. Let the symbol A, where 83> 0, denote the part-
itioning A {r;} which satisfies the condition T — % 8, =0, .., m—1. For the chosen
strategy % (-} == u (x (£, [-1%), &) and for the given initial history 2 {f[.1¢,) the gquantity

Put (@ (fol-]ty) =Lim1im sup sup v (z (to[-19)

is called the guaranteed result p . The strategy u°(.), which satisfies the condition
Pusty (& (£ [-124)) = minugspucy (2 (8 141 2)

for every possible initial history «x{f[-]£,)is said to be optimal.

A function v{z{f{-11), u, ¢ defined for all possible histories z{% [-1%), for sufficiently
small &>>0 and for all u &R, satisfying the condition z(z (f,[-11), u, 8§ €= @ and being Borel-
measurable in ¥ for each fixed z{fl:11) and e, is called a counter-strategy. Suppose that
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some counterstrategy v (z (f [-]T), ¥, &) has been chosen, a history =z (f;[-12,) realized, avalue
e > 0and a partitioning A {t;} for the interval [t,,#! have been chosen. Then the motion
z it 1-18) continuously extending Z {f[-11,) is determined for 2, <:<{® as the solution of
the step-wise differential eguation
Sl =70 2l wlth v 0, vid o,
LI ey E=0, .., M-

where the realization (b [-19) = {ultl & R, 1, <t <P} can be any Borel-measurable function.
For the chosen counterstrategy 2 () = v {x (f{,[-19), u, ¢§ and for the given initial history
x {t, [-14,) the guaranteed result p is determined by the eguality
pry @ o l-]8,))==Him Him inf ind y(z{t]-]9)
T 8 Mg u(hi 10
The counterstrategy v () which satisfies the condition
Py (2 (4 [-] ta)) = maXxy(.)0u() (= (8o 11 ty))
for every possible initial history z (ff-1%,) is said to be optimal.
The problems of optimal strategy ¢ {.) and optimal counterstrategy ° {-} constitute a
differential game. We say that this game has a value p° and a saddle point [&° (), " ()} if
optimal u°{.) and $°{.} exist and the eguality

Py (2 (2o [ 1 83)) == ooy (x (8 Tel£y) = 0% (& (8o [-1 24))
is valid for every possible initial history z (¢4 [-]4,).

Theorem 1.1. The differential game being analyzed has a value and a saddle point. The
theorem can be proved in a well-known way (see 74,18,20/, for example}. In this connection
the optimalz®{-} and 1°{.} can be constructed from the game's value ¢ according to the con—
ditions

max, (z lt] — g, 1) f (v, 2z (=], &5 2)) =
min,max, {(x [t] — y, [t f (1, 2 [x), ©, 0))
e be] — y* [e)of (v, 2 (2], u, 29)) =
min, {(z [t} — y* [t-f (v, 2 1), u, ¥}

Here the symbol {g-» denotes the scalar product of vectors a and b, y,lxland y* 3] are
the values at instant 1 for the accompanying histories y,{5i-17) and y* {{-]7), which are
determined f£rom the conditions

0° (ga (tg +1 7)) = min p° (y {4 [+] 7)) (1.3)
po(yt (;‘,[-H))r-.-maxg’(y (to{v}'t)} €1.4)

under the constraint Haz(hl- It —y &G Oyt liCeexp 2h(t — 4). In the general case the consider-
ed proof of Thercem 1.1 is not constructive. Therefore, the effective computation of p° and
the construction of u®{.} and #°{-} remains an unsolved pxoblem,

2. We consider an estimate of the quantity p° (% (f [']4,)), relying on a certain auxil-
iary stochastic programmed construction. Suppose that some history a (4 [-12,) bhas been fixed,
For the interval [t,, #] we select a certain partitioningA{s} i=1, ..., k-4, =t .
fys3 = ¥, With this partitioning we connect the following probability space 0, F, P}: In this
space an elementary event m is any set w== [, .., 2®, 0 . s, vhere #? and & are r -
dimensional vectors, |s®]<(4, |#®|<( K, where ¥ is some sufficiently large number, F is =z
Borel ¢ ~algebra on £, and the probability measure P is generated by aggregate-independent
uniform distributions of random vectors z and s in the corresponding balls fz2]< K and

|s{<1. Thus, we assume that with instant ? there is connected a pair {29, s9} of random
varisbles distributed uniformly for |z [« K and |8/« 1; all the variables 20, s are in-
dependent in aggregate.

Random functions Borel-measurable in all their arguments, nonanticipatory {in {} rela-
tive to Elle =120 .., & . . 8, 4« ¢ <t 21/, a¥e called nonanticipatory stochastic
programs ¢{f, u, oYand #{, o). Therefore, these functions satisfy the equalities

vt u, @) = v(f w20, ., g G0 D)
u (21 (0) =u (t\ n'&“)s ey Z(i), Su), ooy S(i))

for £ < i<t i = 4« v o Ky almost surely in @ . The history 2{f{-]1.), the partitioning

A {5} and some pair {u{f o), #{f 2.8} of programs determine a random motion  w{kl-l1% e}
which continuously extends this history for 4, « < ¥, as the solution of the stochastic aif-
ferential aguation
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w il =f(twltohu(t o) (tult o), o) (2.1)
By va(-) and u, (+) we denote programs corresponding to partition A, The quantity
p* (= (1 [-] t4)) = supa sup,,yinf,y(essmaxey (w (4 (19, o))

where essmaxqY 1is computed for the random variable y on the space {Q, F, P}, is called the
programmed maximin p*.

Theorem 2.1, The equality
p° (x (2 [] £)) = p* (x (2, [-] ) (2.2)

is valid for any history =z (¢, [-]¢,). The theorem's proof is a consequence of the following
lemmas.

Lemma 2.1. For any history =z (fy{-]%,), partitioning A , program y, (-) and number P >
p° (z (t, [+] ty)) there exists a program u, () which with probability one ensures the inequality

vyt [-10, ) <p
for the corresponding motion w (4 [-19¥, ©) from (2.1).

The lemma's validity follows from the well-known property of u-stability of function > :
for any history w(tl-] 4, ©), number «>0 and admissible function z (Gl- I, 4, ©) we can find
an admissible function ‘uwltil-itin, ) (all for a fixed value of @) such that the inequality

0% (0 (0 [] ti4qp @) < p° (w0 (20 [] tiy @) + @ (tigg — &) (2.3)
is fulfilled for the corresponding motion w(to[-] ti41, ®), Since here the function u([-] ti4gy ®) Can
be taken to be Borel-measurable in ¢t and © (in ¢ and {s®,..., 0 /0 )  the lemma can be
proved directly by induction on the basis of inequalities (2.3), starting from p°(z (te[-] £,)) =
#° (0 (to [-] t,))and ending at p° (v (¢ [-]19, 0)) = v (w (to [-1 0, @)).

Lemma 2.2. For anyhistory (% [-]¢,) and number B <C p° (% (% [-1ty)) there exists a part-
itioning A andaprogram v, (+) such that for every program ua (+) the inequality

Ply@ltal-18,0)>8)>t>0 2.4
is ensured for the corresponding motion w(f [-] ¢, ®) from (2.1), where the symbol P (4) de-
notes the probability of event 4.

Indeed, we shall assume the step 8 = max; (4, —#) of partitioning A{4} to be sufficiently
small (an estimate of the suitable smallness of & will be indicated below). We determine the
program v (t,u, ®) = » (ti, u, 20, &), 4 < t <ty i=1,...,k, so as to fulfil the condition

(3(i)'f (t, z(i)' u, v (&, u, 5(;)1 ‘(i)))) = min, <'(i)‘/ (4, ’“)1 u, v)> (2.5)

From the measurable selection lemma /22/ follows the possibility of constructing such a func-
tion v (¢, u, w), measurable in the arguments 2,5 and u for 4 <i¢<tjy,i=1,...,k» We consider
the random motion w(t[-1%, @)= {wlt, 0], % <t<® 0eQ), extending the history z(nl[-1¢) and gen-
erated by the constructed program sz, (-) of (2.5) and some program uz,(:). Let ¥*Iti, 0] be the
value at instant # for the accompanying history u* (te[:]1%, 0), whicn 1s determined from con-
dition (1.4), where t=1t,2(f[-1t)=w(to[-1%, ©) and €>0 is some sufficiently small number.

We select some value a>>0. Because of the independence of the random variables s, j=1,
.+ k Wwe can assert the validity of the inequality

P (0) —w [, 0l | S @, | ) (@) — ( [, 0] — (2.6)
Ve <alwltll1t, 0) >n@ >0

Here the symbol P(4]§) denotes the conditional probability of event 4 with respect to the
random variable (function) &, Because of the continuity of function f(tyz,u,v) and the v -
stability of function p° /4,20/, by well-known arguments /4,18,20/ we can now infer from con-
ditions (2.5) and (2.6) that we can find a certain (random) history y(fl-]#i45, ©) which ex-
tends the history y*(tel-]#4, @) and is such that the inequality
Plw(l) tiygo0) ~y @i [V tig, @) B <

@ [ty @] — y* L8, ©])* (1 4 2 (tiyg — ) + £ By @) (g — ),
0° ( (to [-] ti4qy ©)) 2> p° (y* (o [-] ti, ©)) — £ B, @) (biya — 8)
lw (tl-1t, @) 2 () >0

lim { (z,8) = 0,0 —+ 0,8 -0

is valid. Hence by induction we can prove that for any not preselected values {*>0 and

e>0 we can find arbitrarily small values 8>0 and & >0 such that for the motion w (o [+] &, )
from (2.1) being examined we can find a history y(ta{-]1® ®) for which the inequality

where
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Pllwtl]d ) —yl18, o)< eexp2h (& — to), (2.7)
It o) > O (]t o) — L%
fzttal-1t) —y* b1ty @) <Seexp2h(t, — o) > v (@)

is valid. As a consequence of the continuity of p° and vy, from (2.7) it follows that for any
value PB<p°(z(tlelt,)) , for the choice of sufficiently small ¢>0 and {*>0 and for suffic-
iently small 3>0 and «>0 the program »,(-) constructed for (2.4) ensures inequality (2.4)
for every program u,(.) . This proves Lemma 2.2.

3. In the general case the computation of the game's value p° in terms of the program-—
med maximin p¥ on the basis of equality (2.2) is scarcely constructive. However, in certain
cases this equality is useful for estimating p° and for constructing u°(.) and 2°(.). Here
we consider in detail the case when the equation of motion (l.1) is strictly linear, i.e.

=AWz +7tu ), uER veQ (3.1)

where 4 (#) is a continuous matrix-valued function. In this case we can construct the probabil-
ity space {Q,F,P} on the basis of only the random variables s, assuming’ e = {58, ..., &)},
since in the case of (3.1) the variables 2z in condition (2.5) do not really play any role.
{In general, in each actual case the space {Q, F,P} can be selected as this or that depend-
ing on the selection of realizations of some random function § (4 [:1%, ®) or other as w , whose
nature corresponds to the problem at hand).
On the given probability space {f, F, P} we now choose a certain normed linear space L®

(tto, 8], Q) of random functions w(z [+18, <) = {w (4 @), it < t < B, 0 = Q) 4 continaing the random
functions w(#®) with continuous (almost sure) realizations w (f [-]®, w). We assume that the
given functional ¥ of (1.2} can in some way or other be extended onto the realizations w (4

[-19, ®) of the elements from L® so that we can speak of the random variable ylol=y{w(4{-19,0)).
Here we assume the fulfillment of the following condition. Let Wyg® be the set of elements

w(:)=w([ 19 *)from L®, which satisfy the condition

ess maxey (W (8 [-19, @) < B, (3.2)
and let the inequality
Prwlld o >p+ea =2t (3.3)
be valid for some values ¢>>0 and (>0 for some element w(-)€ L®), Then the inequality
920 e >0 (3.9)
is valid for the distance ¢ in L® from the element w {)to set W®,
In what follows we take for definiteness, for example, that the norm Hw(}lle in L®

is specified by the inequality
° " o
bo (Vo= (M ot 0 i @) = (§T 1w 00w @0 P o)

and that the norm in the adjoint space L,® (I1, 9], Q) of random functions I(:) =1(t [-]19, @) =
{1, o) t <t P o R}is specified by the equality

2 : £
1T~ (§ 11,0 P(an)

where p (df) is some Borel measure on the interval [#, #] and the symbol M denotes the mean
(mathematical expectation).

For a given initial history z(#[-]%,) we select some number § < p° (x (2, [-]¢,)). Let some
function w® (4 [-18, )& L®satisfy condition (3.2). We choose a program va{-) constructed
in accordance with condition (2.5), under the assumption that the base space {Q,F, P} cor-
responds to a partitioning A of interval f, < ¢t< ¥, having a sufficiently small step §.Scan-
ning all possible nonanticipatory stochastic programs us (-}, in space I® we obtain an attain-
ability domain G composed of all possible random motions w (4 (-], <) £from (2.1), extending
the history =z {f [-12,). If the step § of partitioning A {i} is sufficiently small, then by
Lemma 2.2 the domain G cannot contain the function w® (¢, [.14,.),because for a sufficiently
small step § , for all the motions w (¢ () &,-) from (2.1) being examined, the condition (2.4)
is fulfilled for some §{ >0 and g >0 . Furthermore, ineguality (3.4) is fulfilled then for
the distance @ in I from any motion w(f, [-19, -) to the element wi® (s, [-19, -).
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By arguments well known in the theory of strictly linear controlled systems we can show
that the closure in L™ of domain G coincides with the closed convex hull W® in L® of this
domain & . Therefore, the inequality

o*>uif e H>0 (3.5}

also will be fulfilled for the distance ¢* in L® from the element uf¥ (3 [-1%,:) to the closed
convex hull of domain & . Hence, once again on the basis of well-known arguments from the
theory of strictly linear systems /4/, which rely on the theorem on the separation of convex
sets in L® , we deduce the inequality (the prime denote transposition)

plzlel-Jla) A wW {1, Y= (3.6}
£,

supiey [ M§ <10 210> @0+
ﬂ .

M§ LH(t@)-X (0,8) 2[ty] > (A1) +
y k]

L]
M min, <M, B X @01 e)p (dt}] of (T, v, 1, Q> AT —
1,

4
MY <Hew)w 0> @] 00 1O <

because the quantity ¢ in (3.6) is also the distance @¥, Here X (4 t*)is the fundamental
matrix of solutions of the homogeneous equation z == 4 (f) z and the symbol M.IE {p)] denotes
the conditional mean

MeE (=M E@{sT{o)...,s0@) 4t oo f=1,...,%

Conversely, if some function wi® (f, [-19, )& WO, then @{z(f [-14), &, v (5119, +)) =0,
From these relations, with due regard to Lemmas 2.1 and 2.2, we conclude that the programmed
maximin o* (2 (¢ [-] 2,)), and the game's value ¢° (z (¢, [-] #.)) equal to it, is the upper bound
of those numbers § for which the inequality

supainf,m @ (= (5 -1 ), A, @ (4 [-19, N> 0 3.7

is valid when w® {5 [.198, )= Wo.
If the sets Wp® are convex for every f , then the guantity p* ==p° is the upper bound
of those values of B for which the inequality

supa® (2, (fy [+ 2a), A, W) > 0 (3.8)

iz valid, where the quantity ¢ differs f£rom the quantity @ from (3.6} only by the last sum~
mand which for the @ f£rom (3.8} has the form

k4
P — supwfg)(,)M§ KLt @) w® (8, 0) > p (dt)

when w® (2, [.19, -) & Wy, Thus, the problem is reduced to computing the quantity ¢ for (3.7)
or for (3.8). The problem of computing ¢ is a mathematical programming problem on the max-
imum of a functional concave in 1(-), under the constraint [I(-}){ln* < 1. Such a problem has
no principal difficulties; however, the practical computations often prove to be too labor-
ious.

Above we have considered the case when the original differential game can be formalized
in the classes (strategies-counterstrategies). In completely the same way we can prove a
theorem, similar to Theorem 2.1, also in the case when the game has been formalized in clas-
ses of mixed strategies. The only difference here is that in the programmed stochastic con-
struction the programs of the functions u(tf, ®) and v (i, u, ®) are replaced by the programs of
the measures u{he) on R and v{i @) on Q.

In conclusion, let us compare the guantity © involved in the programmed stochastic con-
struction in the case of convex sets Wp® with corresponding guantities in the analogous
problems treated in /18,19/., The difference is determined by the fact that here the computa-
tion is based always on one and the same universal program v, (-) from (2.5), whereas in /18,
19/ the program p(.) is based each time as the extremal program corresponding to the problem's
properties on the maximum over ](.) . The transition to the universal program v (-) improves
certain qualities of the problem on the computation of @ : the gquantity to be maximized be-
comes a function concave in [{-}, ete. At the same time the guantity @ itself losescertain
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useful properties. Thus, generally speaking, the quantity @ loses the property of y-stabil-
ity; only the quantity p* is left with it. This obtains because, in general, it is not as-
sumed that the nature of space L® corresponds to the nature of functional ¥ and to the nat-
ure of the estimate of the deviations of the random variable ¥ [w! from the quantity essmaxg
y lol Thus, for the sake of definiteness, above we chose the Hilbert space L&, This

determines the convenient adjoint space L,®. But in many cases the property of y-stabil-
ity can be returned to the quantity ¢ also in the case of the universal program wv, (-) if the
metric in [(® is selected in accordance with the nature of functional ¥ and with the estimate
of the deviation of ¥ lw] from the quantity essmax,ylol.

For example, if the functional y(z (to[-19) = v(z[8]) and the quantity v () has the sense of
some norm llz{ in space {z}, then as the norm [w (:)lg= lw(®, )|y we can choose the quantity
lw®, Mg = ess max,|w{® o). Then the quantity @ acquires the appropriate property of u-
stability. But the computation of @ is complicated by the fact that the adjoint space now
turns out to be the space of additive functions A (4) of the subsets 4 . However, this is
not necessarily too complicated a matter, since often the problem later is again reduced to
suitable functions l(w) of the points w=R. If the quantity Y does not have the sense of a
norm, then again we can strive to return the u-stability property to the quantity ¢ by defin-
ing the latter not in terms of distance in L® but on the basis of estimates which are deter-
mined by the functions ¥« (or the functionals 7Y« adjoint in due manner to the quantity 7.
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